Tranzit-rtk.ru

Авто Дело "Транзит РТК"
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как настроить балансировочный клапан

Как настроить балансировочный клапан

Балансировочный клапан — вид специальных устройств, которые позволяют регулировать систему отопления, обеспечивая ее гидравлическую балансировку. Такая настройка выполняется с целью обеспечения в каждой ветке системы постоянного значения расхода теплоносителя, достаточного для подачи необходимого количества теплоты к каждому подключенному радиатору. Это позволяет устранить ситуацию, когда одни отопительные приборы прогреваются сильнее, а другие — слабее. Установка таких устройств на каждом контуре позволяет снизить уровень затрат на отопления до 30%. Однако для этого нужно знать, как настроить балансировочный клапан. Только при его правильной настройке достигается такой положительный эффект. Ошибки при регулировке приводят к разбалансировке системы и нарушению нормальной подачи тепла к радиаторам.

Требования по установке балансировочных клапанов

Чтобы корректно настроить балансировочный клапан, необходимо, прежде всего, его правильно установить. Регулирующие устройства устанавливают на вновь вводимых системах отопления. В этом случае монтаж производится в соответствии с разработанным проектом. Оснащения такой арматурой уже функционирующей системы предусматривается только в том случае, если существуют проблемы, связанные с ее разбалансированностью. Если такие проблемы отсутствуют, то монтировать клапаны нет необходимости.

Ручной балансировочный клапан монтируется на обратной ветви вблизи от ее соединения с обратной магистралью. Если используют автоматический клапан, дополнительно на подающей магистрали устанавливается регулятор перепада давления. Регулятор перепада соединяется с балансиром при помощи капиллярной трубки.

Правильная установка балансировочного клапана возможна при соблюдении следующих требований:

Обязательно должно быть соблюдено направление установки. На корпусе клапана имеется стрелка, направление которой при установке должно соответствовать направлению потока теплоносителя.

При монтаже не допускается попадание внутрь устройства каких-либо загрязнителей.

Чтобы предотвратить возникновение турбулентности в контуре, прямой участок трубы перед балансировочным вентилем должен составлять в длину не менее 5 ее диаметров, а после вентиля — не менее 2 диаметров.

При монтаже автоматического балансира должен быть предусмотрен дополнительный штуцер, который позволит обеспечить первоначальное заполнение отопительного контура при полностью закрытом клапане.

Как правильно настроить балансировочный клапан в системе отопления

Как настроить балансировочный клапан.jpg

Настройка балансировочного клапана или балансировка системы выполняется после завершения ее монтажа или переоснащения. При этом должны быть установлены оптимальные значения расхода теплоносителя на каждом из отдельных контуров. В ходе регулировки должны быть установлены значения расхода теплоносителя после каждого клапана, соответствующие расчетным параметрам, приведенным в проектной документации.

Перед регулировкой производится измерение давления теплоносителя до и после клапана при помощи манометров, подключенных к измерительным штуцерам устройства. Полученная разница показывает перепад давления, на основании значения которого определяется фактический расход теплоносителя в контуре. Для этого используются таблицы, которые прилагаются к устройству. Чтобы привести значение расхода в соответствии с расчетным, необходимо повернуть рукоятку балансировочного клапана на соответствующее количество оборотов. При этом изменяется диаметр условного прохода, что приводит к уменьшению или увеличению расхода теплоносителя.

Также существует другой метод настройки, который демонстрирует максимальную эффективность, если балансировочный клапан установлен на каждом радиаторе. Перед первым запуском системы все вентили открываются максимально. После выхода системы на рабочий режим производится измерение температуры поверхности каждого радиатора при помощи контактного термометра. Разница температур устраняется при помощи балансировочных клапанов. При этом вентили последних радиаторов в контуре не трогают, а закручивают вентили на батареях, расположенных ближе к подаче. Величина оборотов закручивания увеличивается по мере приближения к источнику. Таким образом, необходимо добиться, чтобы разница температур в радиаторах была минимальной. Примерно через 20 минут, после адаптации системы к выставленным настройкам, нужно провести повторные контрольные замеры.

Energy
education

Microsoft Excel

Системы централизованного теплоснабжения — источник производства тепловой энергии работает на теплоснабжение группы зданий и связан транспортными устройствами с приборами потребления тепла.

5. Подбор клапанов регулирующих устройств

Принцип подбора клапанов — общий для всех исполнительных механизмов регулирующих устройств (регуляторов температуры и давления прямого действия, регулирующих клапанов с электроприводами). Он также может использоваться при выборе балансировочной, подпиточной (соленоидных клапанов) и другой трубопроводной арматуры. Регулирующий клапан должен пропустить в бескавитационном и бесшумном режиме расчетное количество теплоносителя через теплоиспользующую систему при заданных параметрах теплоносителя, обеспечив требуемое качество и точность регулирования (в совокупности с исполнительными устройствами и регулирующими приборами).

Пропускная способность

В основе подбора регулирующего клапана лежит его условная пропускная способность $K_$, которая соответствует расходу $G$ (м 3 /ч) холодной воды ($Т = 20$ °C), проходящей через полностью открытый клапан при перепаде давлений на нем $ΔР_ <кл.>= 1$ бар. $K_$ — конструктивная характеристика клапана. При выборе клапана его $K_$ должна быть равна или близка значению требуемой пропускной способности $K_v$ с рекомендуемым запасом:

Определение условной пропускной способности клапана.Определение условной пропускной способности клапана.

Требуемая пропускная способность определяется в зависимости от расчетного расхода теплоносителя через клапан и от фактического перепада давлений на нем по формуле, м3/ч:

Читайте так же:
Техническому обслуживанию установок автоматической пожарной сигнализации

где $G_р$ — расчетный расход теплоносителя через клапан, м 3 /ч; $ΔР_<кл.>$ — заданный перепад давлений на клапане, бар.

Расчетный расход теплоносителя

Системы отопления и вентиляции. При определении требуемой пропускной способности регулирующего клапана для систем отопления и вентиляции расчетный расход теплоносителя $G_<рО(В)>$ определяется по их тепловой нагрузке $Q_<О(В)>$ (кВт) и температурному перепаду $ΔT = (Т_1 – Т_2)$ в контуре, где установлен клапан, м3/ч:

При этом температурный перепад принимается по температурному графику при расчетной температуре наружного воздуха для проектирования отопления (например, 150–70 °C).

Система ГВС. Подбор регулирующих клапанов для подогревателей сис-темы ГВС производится при расходе греющего теплоносителя, который определяется по максимальной часовой тепловой нагрузке на ГВС $Q_<ГВС>$ (кВт) и перепаду температур греющего теплоносителя в точке излома температурного графика (например, 70–40 °C). Расчетный расход теплоносителя через клапан системы ГВС при непосредственном водоразборе из тепловой сети принимается в размере максимального часового расхода горячей воды для хозяйственно-питьевых нужд или на технологический процесс.

Пропускная способность клапанов регулирующих устройств, обслуживающих одновременно систему отопления и систему ГВС, например общего для этих систем регулятора перепада давлений, определяется:

  • при одноступенчатом нагреве воды для системы ГВС — по сумме их расчетных расходов;
  • при двухступенчатой смешанной схеме нагрева воды (I ступень водоподогревателя и система отопления подключены к тепловой сети последовательно, II ступень — параллельно системе отопления) — по сумме расчетных расходов на отопление и ГВС с коэффициентом 0.8.

Система подпитки. При выборе подпиточных устройств расчетный часовой расход берется в размере 20 % от полного объема воды в системе теплопотребления, включая подогреватель и расширительный сосуд. Объем воды в системе отопления с достаточной точностью можно принимать из расчета 15 л на каждый кВт тепловой мощности системы.

Расчетный перепад давлений

Выбор расчетного перепада давлений на регулирующих клапанах — наиболее сложно решаемая проблема. Если расход теплоносителя через клапан задан однозначно, то перепадом давлений на нем можно варьировать. От принятого перепада давлений зависит не только калибр клапана, но также работоспособность и долговечность регулирующего устройства, бесшумность его функционирования, качество регулирования. Выбор перепада давлений для всех регулирующих клапанов теплового пункта следует производить комплексно, во взаимосвязи, с учетом конкретных условий и приведенных ниже требований. Исходной величиной для выбора перепада давлений на регулирующих клапанах теплового пункта является перепад давлений в трубопроводах тепловой сети на вводе в здание (на узле ввода теплового пункта) $ΔР_с$. Обычно перепад давлений на вводе в здание принимается по официальным данным теплоснабжающей организации с запасом 20% ($0.8·ΔР_с$). Для обеспечения качественного процесса регулирования и долговечной работы регулирующего клапана перепад давлений на нем должен быть больше или равен половине перепада давлений на регулируемом участке:

Регулируемый участок — это часть трубопроводной сети с теплоиспользующей установкой, где расположен клапан, между точками со стабилизированным перепадом давлений или при его колебаниях в пределах ±10 %.

Выбор перепада давлений на регулирующем клапане.Выбор перепада давлений на регулирующем клапане.

Рекомендуемое абсолютно минимальное значение перепада давлений на регулирующем клапане $ΔР^<мин>_ <кл>= 0.3$ бар. В то же время перепад давлений на клапане не должен превышать предельно допустимое значение, гарантирующее работу клапана в бескавитационном режиме. Проверку клапана на возникновение кавитации следует осуществлять при температурах проходящего через него теплоносителя. С этой целью для выбранного клапана определяется предельно допустимый перепад давлений $ΔР^<пред>_<кл>$ и сравнивается с принятым перепадом при расчете $K_v$. Предельно допустимый перепад давлений на регулирующем клапане рассчитывается по формуле, бар:

где $Z$ — коэффициент начала кавитации. Принимается по каталогам на регулирующие клапаны в зависимости от их типа и диаметра; $P_1$ — избыточное давление теплоносителя перед регулирующим клапаном, бар; $Р^<из б>_<нас.>$ — избыточное давление насыщенных паров воды в зависимости от ее температуры $Т_1$ в бар. Если рассчитанный $ΔР^<пред>_<кл>$ окажется меньше принятого ранее $ΔР_<кл>$, то необходимо либо уменьшить заданный перепад давлений на клапане путем перераспределения его между элементами трубопроводной сети, в том числе за счет дополнительной установки какого-либо дросселирующего устройства (например, ручного балансировочного клапана) перед клапаном, либо переместить клапан на обратный трубопровод, где температура теплоносителя менее 100 °C. При применении не разгруженного по давлению клапана перепад давлений на нем не должен превышать также предельного значения, свыше которого клапан не будет закрываться под воздействием привода, у которого ограничено усилие. Во всех случаях в целях минимизации шумообразования перепад давлений на регулирующих клапанах рекомендуется принимать не более 2.5 бар.

Регулирующие клапаны в сочетании с электрическими приводами имеют относительный диапазон регулирования не менее 1:30, т. е. клапан обеспечивает пропорциональное регулирование при уменьшении расхода проходящей через него среды по сравнению со значением $K_$ в 30 раз. Если требуется расширить диапазон регулирования, можно установить два клапана параллельно: один — с бóльшей пропускной способностью, подобранный на номинальный расход теплоносителя, а второй — с мéньшей пропускной способностью, рассчитанный на пропуск 1/30 части номинального расхода. При этом электрические соединения клапанов должны быть выполнены таким образом, чтобы сначала открывался «маленький» клапан и только после его полного открытия — «большой». Для обеспечения такой последовательности работы клапанов можно использовать их концевые выключатели (встроенные или дополнительные). Для системы подпитки перепад давлений на соленоидном клапане определяется как разность между требуемым статическим давлением в системе теплопотребления при ее независимом присоединении к тепловой сети и давлением перед клапаном (в обратном трубопроводе тепловой сети или создаваемое подпиточным насосом). Определение расчетных параметров и последовательность выбора регулирующих клапанов проиллюстрированы в приведенных ниже примерах.

Читайте так же:
Установка системы isofix в автомобиль
Пример 1

Подобрать регулирующий клапан при следующих условиях:

  • клапан устанавливается на обратном трубопроводе после теплоиспользующей установки;
  • теплоноситель — вода с температурой в обратном трубопроводе: $Т_2 = 70$ °C;
  • потери давления в теплоиспользующей установке (в сети): $ΔР_ <то>= 1.5$ бар;
  • располагаемый напор на регулируемом участке произвольный (определяется по результатам подбора клапана);
  • расчетный расход теплоносителя: $G_р = 10$ м 3 /ч.

Решение 1. Расчетный перепад давлений на клапане из условия $ΔР_ <кл>≥ 0.5·ΔР_<ру>$, т.е. $ΔР_ <кл>≥ ΔР_<то>$, принимается равным $ΔР_у$, бар:

2. Рассчитывается требуемая пропускная способность клапана по формуле, м 3 /ч:

3. Из технического каталога выбирается клапан Ду 25 с $K_ = 10$ м 3 /ч (ближайший больший к $K_v$).

Пример 2

Выбрать регулирующий клапан при следующих исходных данных:

  • теплоноситель — вода с температурой: $Т_1 = 150$ °C, и давлением насыщенных паров: $Р_ <нас>= 3.85$ бар;
  • избыточное давление теплоносителя перед клапаном: $Р_1 = 7$ бар;
  • предварительно заданный перепад давлений на регулирующем клапане: $ΔР_ <кл>= 2.5$ бар;
  • расчетный расход теплоносителя: $G_р = 40$ м 3 /ч.

Решение 1. Рассчитывается требуемая пропускная способность клапана по формуле, м 3 /ч:

2. Из каталога «Регулирующие клапаны с электроприводами и гидравлические регуляторы температуры и давления» предварительно выбирается клапан Ду 50 с $K_ = 32$ м 3 /ч и коэффициентом начала кавитации $Z = 0.5$.

3. Рассчитывается предельно допустимый перепад давлений на клапане с запасом 10 %, бар:

4. Так как принятый первоначально перепад давлений на клапане оказался больше предельно допустимого по условиям кавитации ($ΔР_ <кл>= 2.5 > ΔР^<пред>_ <кл>= 1.4$), $K^<тр>_ пересчитывается при $ΔР_ <кл>= 1.4$ бар, м3/ч:

5. По скорректированному значению $K_v$ выбирается клапан Ду 65 с $K_ = 50$ м 3 /ч и коэффициентом начала кавитации $Z = 0.5$.

Пример 3

Выбрать моторные регулирующие клапаны и клапаны регуляторов перепада давлений для теплового пункта.

Схема теплового пункта .Схема теплового пункта .

  • Теплоноситель — вода, подаваемая из закрытой системы теплоснабжения по температурному графику с «летней» срезкой для ГВС.
  • Расчетная температура теплоносителя в тепловой сети: $Т_1 = 150$ °C и $Т_2 = 70$ °C. Температура в точке «излома» графика: $T’_1 = 70$ °C и $T’_2 = 40$ °C.
  • Избыточное давление в трубопроводах тепловой сети: подающем: $Р_1 = 12$ бар, обратном: $Р_2 = 4$ бар.
  • Расчетная тепловая нагрузка: на отопление: $Q_О = 1000$ кВт, на вентиляцию: $Q_В = 2000$ кВт, на ГВС: $Q_ <ГВС>= 500$ кВт.
  • Потеря давления: в системе отопления: $∆Р_О = 0.5$ бар, в системе вентиляции: $∆Р_В = 1$ бар, в первой ступени водоподогревателя ГВС (по греющей воде): $∆Р_ <ГВС1>= 0.3$ бар, во второй ступени водоподогревателя ГВС (по греющей воде): $∆Р_ <ГВС2>= 0.2$ бар.

Решение 1. Расчетный расход через регулирующий клапан в узле приготовления теплоносителя для системы отопления рассчитывается по формуле, м 3 /ч:

$$G_ <ОТ>= 0.86 · Q_О / (T_1–T_2) = 0.86 · 1000 / (150 – 70) = 10.75.$$

2. Расчетный расход через клапан регулятора перепада давлений для системы вентиляции, м 3 /ч:

$$G_В = 0.86 · Q_В / (T_1 – T_2) = 0.86 · 2000 / (150 – 70) = 21.5.$$

3. Расчетный расход через регулирующий клапан системы ГВС, м 3 /ч:

$$G_ <ГВС>= 0.86 · Q_ <ГВС>/ (T’_1 – T’_2) = 0.86 · 500 / (70 – 40) = 14.33.$$

4. Расчетный расход через клапан регулятора перепада давлений РПД1 для систем отопления и ГВС, м 3 /ч:

$$G_ <РПД1>= 0.8 · (G_О + G_<ГВС>) = 0.8 · (10.75 + 14.33) = 20.06.$$

5. Предельно допустимый перепад давлений по условию бескавитационной работы на клапанах регуляторов перепада давлений для систем отопления с ГВС ($∆P^<макс>_<РПД1>$) и системы вентиляции ($∆P^<макс>_<РПД2>$) при $Z = 0.5$ (рекомендуемое значение для предварительного расчета) и $Р_ <нас>= 3.85$ бар, бар:

6. Принимаем перепад давлений на регуляторах перепада давлений с запасом 10 %, бар:

7. Давление в подающем трубопроводе перед регулирующими клапанами систем отопления и ГВС, бар:

$$Р_3 = Р_1 – ∆Р_ <РПД1>= 12 – 3.7 = 8.3.$$

8. Предельно допустимый перепад давлений по условию бескавитационной работы на регулирующих клапанах системы отопления ($∆Р_<клОТ>$) и ГВС ($∆Р_<клГВС>$) при предварительно принятом $Z = 0.5$ и $Р_ <нас>= 3.85$ бар, бар:

9. Принимаем перепад давлений на клапанах систем отопления и ГВС с запасом 10 %, бар:

10. Излишний напор в кольце систем отопления и ГВС гасим на дополнительно устанавливаемом на вводе ручном балансировочном клапане БКI, принимая располагаемый напор на вводе с запасом 10 %, бар:

$$∆Р_ <БК1>= 0.9 · (Р_1 – Р_2) – ∆Р_ <РПД1>– ∆Р_ <кл.О>– ∆Р_ <ГВСI>= 0.9 · (12 – 4) – 3.7 – 2 – 0.3 = 1.2.$$

11. Излишний напор в кольце системы вентиляции гасим на дополнительно устанавливаемом ручном балансировочном клапане БК2, бар:

$$∆Р_ <БК2>= 0.9 · (Р_1 – Р_2) – ∆Р_ <БКI>– ∆Р_ <РПД2>– ∆Р_В = 0.9 · (12 – 4) – 1.2 – 3.7 – 1 = 1.3.$$

12. Требуемая пропускная способность регулирующих клапанов, м 3 /ч:

13. Клапаны выбираются по каталогу на основе требуемых пропускных способностей: для отопления: Ду = 25 мм c $K_ = 10$ м 3 /ч и $Z = 0.5$; для ГВС: Ду = 32 мм c $K_ = 16$ м 3 /ч и $Z = 0.5$; для РПД1: Ду = 32 мм c $K_ = 16$ м 3 /ч и $Z = 0.55$; для РПД2: Ду = 32 мм c $K_ = 16$ м 3 /ч и $Z = 0.55$.

Администратор сайта: Колосов Михаил
email:
Copyright © 2011-2021. All rights reserved.

Клапаны на систему отопления: назначение и применение

Фото: Клапаны на систему отопления

Материал для системы отопления

Клапаны являются неотъемлемыми элементами любой системы отопления (СО), независимо от выбранной схемы и конфигурации контуров. С помощью этих нехитрых приспособлений производится настройка параметров теплоснабжения, обеспечение безопасности и стабильности работы системы. В этой публикации будут рассмотрены основные клапаны, применяющиеся в системах централизованного и автономного отопления, их назначение, принцип работы и конструктивные особенности.

Критерии выбора

Количество и параметры клапанов, необходимых для конкретной СО, выбирается еще на стадии расчетов и проектирования. Основными критериями, которые влияют на выбор данных элементов являются:

  • Тип, схема и конфигурация СО.
  • Температурный режим (номинальный и максимальный). (рабочее и максимальное).
  • Сечение трубопровода и тип резьбы.
  • Тип теплоносителя (вода, рассолы, антифризы).

Работа данных приборов стабилизирует СО, делает ее эффективной и безопасной. Всем кто занимается самостоятельной установкой в жилище отопительной системы необходимо знать назначение и их принцип действия. Все клапаны можно разделить по назначению на три категории: группа безопасности, управления и регулирования.

Всем известно, что любая СО является повышенным источником опасности, так как теплоноситель в системе находится под давлением. И чем выше температура – тем выше давление (в замкнутой СО). Далее, рассмотрим устройства, которые отвечают за безопасность работы СО

Предохранительный

Предохранительный клапан

В большинстве моделей современных котлоагрегатов производители предусматривают систему безопасности, «ключевой фигурой» которой является предохранительная арматура, включенная прямо в теплообменник котла или в его обвязку.

Назначение предохранительного клапана в системе отопления заключается в предотвращении повышения давления в системе выше допустимого, которое может привести: к разрушению труб и их соединений; протечкам; взрыву котельного оборудования

Устройство предохранительного клапана

Конструкция данного рода арматуры проста и незатейлива. Прибор состоит из латунного корпуса, в котором размещена подпружиненная запирающая мембрана, соединенная со штоком. Упругость пружины является главным фактором, который удерживает мембрану в запертом положении. Регулировочной рукояткой производится настройка силы сжатия пружины.

При давлении на мембрану выше установленного, пружина сжимается, она открывается и происходит сброс давления через боковое отверстие. Когда давление в системе не сможет преодолевать упругость пружины, мембрана займет исходное положение.

Совет: Приобретайте предохранительное устройство с регулировкой давления от 1, 5 до 3,5 Бар. В это диапазон попадает большинство моделей твердотопливного котельного оборудования.

Воздухоотводчик

Достаточно часто В СО образуются воздушные пробки. Как правило, у их появления есть несколько причин:

  • закипание теплоносителя;
  • большое содержание воздуха в теплоносителе, автоматически добавляющегося напрямую из водопровода;
  • В результате подсоса воздуха через негерметичные соединения.

Устройство клапана сброса воздуха из системы отопления

Результатом воздушных пробок является неравномерный прогрев радиаторов и окисление внутренних поверхностей металлических элементов СО. Клапан сброса воздуха из системы отопления предназначен для отвода воздуха из системы в автоматическом режиме.

Конструктивно, воздухоотводчик представляет собой полый цилиндр, выполненный из цветного металла, в котором расположен поплавок, соединенный рычагом с игольчатым клапаном, который в открытом положении соединяет камеру воздушника с атмосферой.

В рабочем состоянии внутренняя камера устройства заполнена теплоносителем, поплавок поднят, а игольчатый клапан перекрыт. При попадании воздуха, который поднимается в верхнюю точку устройства, теплоноситель не может подняться в камере до номинального уровня, а следовательно, поплавок опущен, прибор работает в выпускном режиме. После выхода воздуха, теплоноситель поднимается в камере данного рода арматуры до номинального уровня, а поплавок занимает штатное место.

Обратный

В самотечный СО есть условия, при которых теплоноситель может поменять направление движения. Это грозит повреждением теплообменника теплогенератора вследствие его перегрева. То же может случиться и в достаточно сложных СО с принудительным перемещением теплоносителя, когда вода, через обходную трубу насосного узла попадает обратно в котел. Механизм действия обратного клапана в системе отопления достаточно прост: он пропускает теплоноситель только в одну сторону, блокируя его при движении обратно.

Обратный клапан

Существует несколько типов данного рода арматуры, которая классифицируется по конструкции запирающего устройства:

  • тарельчатый;
  • шаровый;
  • лепестковый;
  • двустворчатый.

Как уже понятно из названия, в первом типе в качестве запирающего устройства выступает стальной подпружиненный диск (тарелка), соединенная со штоком. В шариковом в качестве затвора выступает пластиковый шарик. Двигаясь «в правильном» направлении теплоноситель выталкивает шарик по каналу в корпусе или под крышку устройства. Как только прекращается циркуляция воды или меняется направление ее движения, шарик, под действием гравитации занимает исходное положение и перекрывает движение теплоносителя.

В лепестковом, запирающим устройством является подпружиненная крышка, которая опускается при изменении направления воды в СО под действием естественной гравитации. Двустворчатый элемент устанавливается (как правило) на трубы большого диаметра. Принцип их работы не отличается от лепесткового. Конструктивно, в такой арматуре, вместо одного лепестка, подпружиненного сверху, устанавливается две подпружиненные створки.

Данные приборы предназначены для регулировки температуры, давления, а также стабилизации работы СО.

Балансировочный

Любая СО требует гидравлической регулировки, другими словами — балансировки. Выполняется она различными способами: правильно подобранным диаметром труб, шайбами, с разным проходным сечением и пр. Наиболее эффективным и в то же время простым элементом настройки работы СО считается балансировочный клапан для системы отопления.

Назначение данного устройства в том, чтобы на каждое ответвление, контур и радиатор поддавался необходимый объем теплоносителя и количество тепла.

Балансировочное устройство

Клапан представляет собой обычный вентиль, но с установленными в его латунный корпус двумя штуцерами, которые дают возможность подключения измерительного оборудования (манометров) или капиллярной трубки в составе с автоматическим регулятором давления.

Принцип работы балансировочного клапана для системы отопления заключается в следующем: Оборотами регулировочной рукоятки необходимо добиться строго определенного расхода теплоносителя. Делается это замерами давления на каждом штуцере, после чего по диаграмме (обычно прилагаемой производителем к устройству) определяется количество поворотов регулировочной рукоятки для достижения нужного расхода воды на каждый контур СО. На контуры с количеством радиаторов до 5 шт устанавливают ручные балансировочные регуляторы. На ветки с большим количеством отопительных приборов – автоматические.

Перепускной

Это еще один элемент СО, предназначенный для выравнивания давления в системе. Принцип работы перепускного клапана системы отопления сходен с предохранительным, но есть одно отличие: если предохранительный элемент стравливает излишки теплоносителя из системы, то перепускной, возвращает его в обратную магистраль мимо отопительного контура.

Перепускной клапан

Конструкция данного устройства также идентична предохранительным элементам: пружина с регулируемой упругостью, запорная мембрана со штоком в бронзовом корпусе. Маховиком настраивается давление, при котором данное устройство срабатывает, мембрана открывает проход для теплоносителя. При стабилизации давления в СО, мембрана возвращается на прежнее место.

Трехходовой

Существует практика добиваться определенной температуры теплоносителя в различных ветках и контурах СО методом смешивания или разделения потоков теплоносителя. Трехходовой клапан на системе отопления играет роль устройства, регулирующего температуру рабочей жидкости после теплогенератора.

Трехходовый

Конструкция смесительной арматуры проста: в корпусе прибора есть три отверстия, два входа и один выход. Приборы разделительного типа имеют один вход и два выхода.

Основным управляющим устройством данного элемента является термоголовка, внутри которой расположен резервуар с жидкостью (сильфон). При нагреве выносного датчика жидкость в нем расширяется и поступает в сильфон. Объем данного резервуара увеличивается и оказывает воздействие на шток клапана, который открывает или перекрывает входы для смешивания или разделения потоков. В разделительных типах данного элемента СО используется тот же принцип, но шток не открывает проход для потоков, а разделяет один поток на два.

Управлять прибором может не только термостатическая головка. Достаточно популярны устройства с ручным управлением. Глубину нажатия штока определяет поворот управляющей рукоятки. Сегодня, на рынке климатической техники широко представлены данные устройства с электро – и сервоприводами.

Устройство автоматической подпитки

Клапан автоматической подпитки

В силу различный обстоятельств (естественное испарение, работа предохранительного элемента и пр.), объем теплоносителя в СО может уменьшаться. Чем меньше теплоносителя – тем больше воздуха в системе, который неизбежно нарушает циркуляцию воды в СО и перегреву котельного оборудования. Чтобы воздух не поступал в систему необходимо вовремя пополнять количество теплоносителя. Делать это можно вручную, а можно установить клапан подпитки системы отопления, тем самым организовать автоматическое пополнение СО теплоносителем.

Конструктивные элементы автоматического клапана

Конструкция данного рода арматуры практически не отличается от предохранительной арматуры, но принцип работы прямо противоположный: пока в СО есть необходимое давление, которое подпирает мембрану к седлу, пружина находится в сжатом состоянии. Когда давление падает ниже минимального, пружина распрямляется и отводит мембрану от седла, давая возможность поступлению воды из бака запаса или водопроводной сети попасть в СО. На рис. ниже показана конструкция данного устройства.

По мере заполнения СО, давление в ней усиливается, пружина сжимается, а мембрана садится в седло на корпусе, перекрывая подпитку.

Важно! Выбор клапанов – это сложный и важный процесс, который лучше всего доверить профессионалам.

Предохранительные клапаны на систему отопления

При резких перепадах температуры теплоносителя в трубах возникает избыточное давление, которое может привести к их разрыву или деформации. Кроме того, во время эксплуатации отопительной системы могут возникать различные сбои, что также может привести к скачку давления в теплосети. Исключить такую ситуацию позволяет монтаж предохранительного клапана в системе отопления.

Предохранительный клапан.

Устройство относится к группе безопасности отопительных приборов и служит для предотвращения различных повреждений. С помощью таких механизмов также может осуществляться регулировка температуры жидкости в теплосети.

Типы предохранителей

Предохранительный клапан для систем обогрева имеет несколько разновидностей, отличающихся по принципу работы и выполняющих различные функции:

  • сбросной;
  • обратный;
  • воздушный;
  • регулирующий;
  • перепускной.

Клапан в разрезе

Сбросной

Устройства сбросного типа заранее рассчитываются на определенное давление, при превышении которого происходит удаление лишнего теплоносителя. Для стравливания избыточного давления предусмотрено специальное сливное отверстие, которое закрыто при нормальных условиях. При повышении давления выше безопасного, мембрана поднимается напором теплоносителя выше отверстия аварийного сброса давления, и избыток жидкости просто удаляется из системы.

Сбросной клапан

Обратный

Устройство служит для предотвращения смены направления движения жидкости в контуре. Суть работы предохранителя проста. Специальный запорный механизм позволяет воде двигаться только в одном направлении – в нагревательный бак. Кроме того, при повышении давления в трубопроводах через «носик» клапана происходит сброс излишков воды. Для того чтобы вода не выливалась на пол, рекомендуется на выходное отверстие клапана надеть сбросной патрубок и вывести его в канализацию.

Подпружиненный

В подпружиненных обратных устройствах заслонка пропускного отверстия закрывается с помощью прижимной силы пружины. Поток воды давит на мембрану, приподнимая пружину и открывая пропускное отверстие. В случае возвратного тока жидкости, что недопустимо, если используется закрытая схема отопления, пружина давит на мембрану сверху, закрывая отверстие. Давление с обратной стороны еще более усиливает прижимную силу, не допуская смены направления движения потока.

Обратный клапан

Шаровый

Имеет в основе тот же принцип, но вместо пружины и затвора используется стальной шар, закрывающий сливное отверстие под действием силы тяжести. Это накладывает некоторые ограничения. Так, например, его можно использовать только на горизонтальных участках отопления.

Воздушный

Помимо избыточного давления в системе отопления существует еще проблема возможного образования воздушных пробок. В основном такая проблема возникает, если теплоносителем выступает вода. Дело в том, что в воде комнатной температуры содержится некоторое количество растворенного воздуха, который высвобождается в процессе нагрева. Установка воздушного предохранительного клапана для отопления в замкнутой системе предотвратит скопление воздуха, перекрывающего движение воды.

Воздушный клапан

Принцип действия

Устройство работает по следующему принципу: в специальной капсуле находится поплавок, когда в системе отсутствует воздух, он находится в поднятом состоянии. При завоздушивании теплосети, уровень воды в капсуле понижается, а поплавок опускается, открывая затвор, выпускающий воздух из системы обогрева. Аварийный спуск воздуха может осуществляться вручную либо автоматически.

Регулирующий

Регулирующий клапан устанавливается перед радиаторами. Он выполняет функцию контроля температуры. Работает по принципу сужения пропускного отверстия при увеличении температуры теплоносителя вплоть до полного перекрытия потока, направленного в батареи. Таким образом становится возможной температурная регулировка систем обогрева, что позволяет сократить перерасход энергии и поддерживать температуру помещения на комфортном уровне.

Регулирующие клапаны

Перепускной

Регулирующие термоклапаны для отопления помогают удерживать температуру в заданных пределах, не допуская перегрева помещения, сужая либо перекрывая поток теплоносителя, ведущий в радиаторы. Такой принцип может привести к ряду проблем.
Например, если схема отопления в доме предусматривает несколько помещений с радиаторами, а поток теплоносителя перекрыт, то его циркуляция останавливается, что может привести либо к неравномерному прогреву разных помещений, либо к повреждению насоса принудительной циркуляции. Для решения таких проблем используется перепускной клапан.

Перепускной клапан выполняет задачу сохранения равномерного тока теплоносителя. Для этого при повышении давления в трубах он перенаправляет его избыток в обратный контур. Теплоноситель не удаляется из системы обогрева. Перепускной предохранитель способен работать в постоянном режиме, а не так, как обратный, выполняющий сброс давления только на пиках повышения объема теплоносителя.

Перепускной клапан

Таким образом установка предохранительного клапана для системы отопления закрытого типа крайне важна. Выбор подходящего устройства зависит от функций, которые будут на него возлагаться.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector